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Quantum computers are available to use over the cloud, but the recent explosion of quantum
software platforms can be overwhelming for those deciding on which to use. In this paper, we
provide a current picture of the rapidly evolving quantum computing landscape by comparing four
software platforms—Forest (pyQuil), QISKit, ProjectQ, and the Quantum Developer Kit—that
enable researchers to use real and simulated quantum devices. Our analysis covers requirements and
installation, language syntax through example programs, library support, and quantum simulator
capabilities for each platform. For platforms that have quantum computer support, we compare
hardware, quantum assembly languages, and quantum compilers. We conclude by covering features
of each and briefly mentioning other quantum computing software packages.
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I. INTRODUCTION

Quantum programming languages have been thought
of at least two decades ago [1–3], but these were largely
theoretical and without existing hardware. Quantum
computers are now a reality, and there are real quantum
programming languages that let anyone with internet ac-
cess use them. A critical mass of effort from researchers
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in industry and academia alike has produced small quan-
tum devices that operate on the circuit model of quantum
computing. These computers are small, noisy, and not
nearly as powerful as current classical computers. But
they are nascent, steadily growing, and heralding a future
of unimaginably large computational power for problems
in chemistry [4, 5], machine learning [6, 7], optimization
[8], finance [9], and more [10]. These devices are a testbed
for preparing the next generation of quantum software
engineers to tackle current classically intractable com-
putational problems. Indeed, cloud quantum computing
has already been used to calculate the deuteron bind-
ing energy [11] and test subroutines in machine learning
algorithms [12, 13].

Recently, there has been an explosion of quantum com-
puting software over a wide range of classical computing
languages. A list of open-source projects, numbering well
over fifty, is available at [14], and a list of quantum com-
puter simulators is available at [15]. This sheer number
of programs, while positively reflecting the growth of the
field, makes it difficult for students and researchers to
decide on which software package to use, getting lost in
documentation or being too overwhelmed to know where
to start.

In this paper, we hope to provide a succinct overview
and comparison of major general-purpose gate-level
quantum computing software platforms. From the long
list, we have selected four in total: three that provide
the user with the ability to connect to real quantum de-
vices—pyQuil from Rigetti [16], QISKit from IBM [17],
and ProjectQ from ETH Zurich [18, 19]—and one with
similar functionality but no current capability to connect
to a quantum computer—the Quantum Development Kit
from Microsoft [20]. The ability to connect to a real quan-
tum device has guided our selection of these platforms.
Because of this, and for the sake of succinctness, we are
intentionally omitting a number of respectable programs.
We briefly mention a few of these in Appendix A.

For now, our major goal is to provide a picture of the
quantum computing landscape governed by these four
platforms. In Section II, we cover each platform in turn,
discussing requirements and installation, documentation
and tutorials, language syntax, and quantum hardware.
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In Section III, we provide a detailed comparison of the
platforms. This includes quantum algorithm library sup-
port in III A, quantum hardware support in III B, quan-
tum circuit compilers in III C, and quantum computer
simulators in III D. We conclude in Section IV with dis-
cussion and some subjective remarks about each plat-
form. Appendix A briefly mentions other quantum soft-
ware, Appendix B includes details on testing the quan-
tum circuit simulators, and Appendix C shows code for
the quantum teleportation circuit in each of the four lan-
guages for a side by side comparison.

II. THE SOFTWARE PLATFORMS

An overview of various quantum computers and the
software needed to connect to them is shown in Figure
1. As it currently stands, these four software platforms
allow one to connect to four different quantum comput-
ers—one by Rigetti, an 8 qubit quantum computer which
can be connected to via pyQuil [41]; and three by IBM,
the largest openly available being 16 qubits, which can
be connected to via QISKit or ProjectQ. There is also a
fourth 20 qubit quantum computer by IBM, but this de-
vice is only available to members of the IBM Q Network
[42], a collection of companies, universities, and national
laboratories interested in and investing in quantum com-
puting. Also shown in Figure 1 are quantum computers
by companies like Google, IBM, and Intel which have
been announced but are not currently available to gen-
eral users.

The technology of quantum hardware is rapidly chang-
ing. It is very likely that new computers will be available
by the end of the year, and in two or three years this list
may be completely outdated. What will remain, however,
is the software used for connecting to this technology. It
will be very simple to use these new quantum computers
by changing just a few lines of code without changing the
actual syntax used for generating or running the quan-
tum circuit. For example, in QISKit, one would just need
to change the name of the backend when executing the
circuit:

1 execute ( quantum circuit , backend=”name” , . . . )

Listing 1: The string “name” specifies the backend to
run quantum programs using QISKit. As future quantum
computers get released, running on new hardware will be as
easy as changing the name.

Although the software is changing as well with new ver-
sion releases [43], these are, for the most part, relatively
minor syntactical changes that do not alter significantly
the software functionality.

In this section, we run through each of the four plat-
forms in turn, discussing requirements and installation,
documentation and tutorials, language syntax, quantum
language, quantum hardware, and simulator capabilities.
Our discussion is not meant to serve as complete instruc-
tion in a language, but rather to give the reader a feel of

each platform before diving into one (or more) of his/her
choosing. Our analysis includes enough information to
begin running algorithms on quantum computers. How-
ever, we refer the reader, once s/he has decided on a
particular platform, to the specific documentation for
complete information. We include links to documenta-
tion and tutorial sources for each package. We are also
assuming basic familiarity with quantum computing, for
which many good references now exist [21, 22].

All of the code snippets and programs included in this
paper were tested and run on a Dell XPS 13 Devel-
oper Edition laptop running Linux Ubuntu 16.04 LTS,
the complete specs of which are listed in [23]. Although
all software packages work on all three major operating
systems, in the author’s experience it is notably easier
to install and use the software on the platform it was
developed on. In a Linux Ubuntu environment, no diffi-
culties nor exotic error messages were encountered when
installing these software packages.

A. pyQuil

pyQuil is an open-source Python library developed by
Rigetti for constructing, analyzing, and running quantum
programs. It is built on top of Quil, an open quantum
instruction language (or simply quantum language), de-
signed specifically for near-term quantum computers and
based on a shared classical/quantum memory model [24]
(meaning that both qubits and classical bits are available
for memory). pyQuil is one of, and the main, developer
libraries in Forest, which is the overarching platform for
all of Rigetti’s quantum software. Forest also includes
Grove and the Reference QVM, to be discussed shortly.
a. Requirements and Installation To install and use

pyQuil, Python 2 or 3 is required, though Python 3 is
strongly recommended as future feature developments
may only support Python 3. Additionally, the Anaconda
python distribution is recommended for various python
module dependencies, although it is not required.

The easiest way to install pyQuil is using the Python
package manager pip. At a command line on Linux
Ubuntu, we type

1 pip i n s t a l l pyqu i l

to successfully install the software. Alternatively, if Ana-
conda is installed, pyQuil can be installed by typing

1 conda i n s t a l l −c r i g e t t i pyqu i l

at a command line. Another alternative is to download
the source code from the git repository and install the
software this way. To do so, one would type the following
commands:

1 g i t c l one https : // github . com/ r i g e t t i c omput ing /
pyqu i l

2 cd pyqu i l
3 pip i n s t a l l −e .
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FIG. 1: A schematic diagram showing the paths to connecting a personal computer to a usable gate-level quantum
computer. Starting from the personal computer (bottom center), nodes in green shows software that can be installed on the

user’s personal computer. Grey nodes show simulators run locally (i.e., on the user’s computer). Dashed lines show
API/cloud connections to company resources shown in yellow clouds. Quantum simulators and usable quantum computers

provided by these cloud resources are shown in blue and gold, respectively. Red boxes show requirements along the way. For
example, to connect to Rigetti Forest and use the Agave 8 qubit quantum computer, one must download and install pyQuil

(available on macOS, Windows, and Linux), register on Rigetti’s website to get an API key, then request access to the device
via an online form. Notes: (i) Rigetti’s Quantum Virtual Machine requires an upgrade for more than 30 qubits, (ii) local

simulators depend on the user’s computer so numbers given are approximates, and (iii) the grey box shows quantum
computers that have been announced but are not currently available to general users.

This last method is recommended for any users who may
wish to contribute to pyQuil. See the contribution guide-
lines on GitHub for more information.

b. Documentation and Tutorials pyQuil has excel-
lent documentation hosted online with background in-
formation in quantum computing, instructions on instal-
lation, basic programs and gate operations, the simulator
known as the quantum virtual machine (QVM), the ac-
tual quantum computer, and the Quil language and com-
piler. By downloading the source code of pyQuil from
GitHub, one also gets an examples folder with Jupyter
notebook tutorials, regular Python tutorials, and a pro-

gram run quil.py which can run text documents written
in Quil using the quantum virtual machine. Last, we
mention Grove, a collection of quantum algorithms built
using pyQuil and the Rigetti Forest environment.

c. Syntax The syntax of pyQuil is very clean and
efficient. The main element for writing quantum circuits
is Program and can be imported from pyquil.quil. Gate
operations can be found in pyquil.gates. The api module
allows one to run quantum circuits on the virtual ma-
chine. One nice feature of pyQuil is that qubit registers
and classical registers do not need to be defined a pri-
ori but can be rather allocated dynamically. Qubits in

http://pyquil.readthedocs.io/en/latest/index.html
https://github.com/rigetticomputing/grove
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pyQuil Overview
Institution Rigetti

First Release v0.0.2 on Jan 15, 2017
Current Version v1.9.0 on June 6, 2018
Open Source? 3

License Apache-2.0
Homepage Home
GitHub Git

Documentation Docs, Tutorials (Grove)
OS Mac, Windows, Linux

Requirements
Python 3, Anaconda

(recommended)
Classical Language Python
Quantum Language Quil
Quantum Hardware 8 qubits

Simulator

∼20 qubits locally, 26
qubits with most API
keys to QVM, 30+ w/

private access

Features

Generate Quil code,
example algorithms in

Grove, topology-specific
compiler, noise

capabilities in simulator,
community Slack

channel

the qubit register are referred to by index (0, 1, 2, ...)
and similarly for bits in the classical register. A random
generator circuit can thus be written as follows:

1 # random number genera tor c i r c u i t in pyQuil
2 from pyqu i l . q u i l import Program
3 import pyqu i l . ga te s as gate s
4 from pyqu i l import api
5

6 qprog = Program ( )
7 qprog += [ gate s .H(0) ,
8 gate s .MEASURE(0 , 0) ]
9

10 qvm = api . QVMConnection ( )
11 pr in t (qvm. run ( qprog ) )

Listing 2: pyQuil code for a random number generator.

In the first three lines, we import the bare minimum
needed to declare a quantum circuit/program (line 2),
to perform gate operations on qubits (line 3) [44], and
to execute the circuit (line 4). In line 6 we instantiate
a quantum program, and in lines 7-8 we give it a list of
instructions: first do the Hadamard gate H to the qubit
indexed by 0, then measure the same qubit into a classi-
cal bit indexed by 0. In line 10 we establish a connection
to the QVM, and in line 11 we run and display the output
of our circuit. This program prints out, as is standard
for pyQuil output, a list of lists of integers: in our case,
either [[0]] or [[1]]. In general, the number of elements
in the outer list is the number of trials performed. The
integers in the inner lists are the final measurements into
the classical register. Since we only did one trial (this
is specified as an argument to api.QVMConnection.run,
which is set as default to one), we only get one inner list.
Since we only had one bit in the classical register, we

only get one integer.
d. Quantum Language Quil is the quantum instruc-

tion language, or simply quantum language, that feeds
quantum computers instructions. It is analogous to as-
sembly language on classical computers. The general syn-
tax of Quil is GATE index where GATE is the quantum
gate to be applied to the qubit indexed by index (0, 1, 2,
...). pyQuil has a feature for generating Quil code from
a given program. For instance, in the above quantum
random number generator, we could add the line

1 pr in t ( qprog )

at the end to produce the Quil code for the circuit, which
is shown below:

1 H 0
2 MEASURE 0 [ 0 ]

Listing 3: Quil code for a random number generator.

It is possible, if one becomes fluent in Quil, to write quan-
tum circuits in a text editor in Quil and then execute the
circuit on the QVM using the program run quil.py. One
could also modify run quil.py to allow circuit execution on
the QPU. We remark that the pyQuil compiler (also re-
ferred to as the Quil compiler in documentation) converts
a given circuit into Quil code that the actual quantum
computer can understand. We will discuss this more in
Section III C.
e. Quantum Hardware Rigetti has a quantum pro-

cessor that can be used by those who request access. To
request access, one must visit the Rigetti website and pro-
vide a full name, email address, organization name, and
description of the reason for QPU access. Once this is
done, a company representative will reach out via email
to schedule a time to grant the user QPU access. An
advantage of this scheduling process, as opposed to the
queue system of QISKit to be discussed shortly, is that
many jobs can be run in the alloted time frame with
deterministic runtimes, which is key for variational and
hybrid algorithms. These types of algorithms send data
back and forth between classical and quantum comput-
ers—having to wait in a queue makes this process sig-
nificantly longer. A (perhaps) disadvantage is that jobs
cannot be executed anytime when the QPU is available,
but a specific time must be requested and granted.

In the author’s experience, the staff is very helpful and
the process is generally efficient. The actual device, the
topology of which is shown in Figure 2, consists of 8
qubits with nearest neighbor connectivity. We will dis-
cuss this computer more in detail in Section III B.
f. Simulator The quantum virtual machine (QVM)

is the main utility used to execute quantum circuits.
It is a program written to run on a classical CPU
that inputs Quil code and simulates the evolution of
an actual quantum computer. To connect to the
QVM, one must register for an API key for free on
https://www.rigetti.com/forest by providing a name and
email address. An email is then sent containing an API
key and a user ID which must be set up by running

https://www.rigetti.com/
https://www.rigetti.com/index.php/forest
https://github.com/rigetticomputing/pyquil
http://pyquil.readthedocs.io/en/latest/
https://github.com/rigetticomputing/grove
https://www.python.org/downloads/
https://www.anaconda.com/download/
http://pyquil.readthedocs.io/en/latest/compiler.html
https://www.rigetti.com/qpu-request
https://www.rigetti.com/forest
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FIG. 2: Schematic diagram showing the topology
(connectivity) of the 8 qubit Agave QPU by Rigetti. Qubits

are labeled with integers 0, 1, ..., 7, and lines connecting
qubits indicate that a two qubit gate can be performed

between these qubits. For example, we can do Controlled-Z
between qubits 0 and 1, but not between 0 and 2. To do the

latter, the Quil compiler converts Controlled-Z (0, 2) into
operations the QPU can perform. This diagram was taken

from pyQuil’s documentation.

1 pyqui l−con f i g−setup

at the command line (after installing pyQuil, of course).
A prompt then appears to enter the emailed keys.

According to the documentation, most API keys give
access to the QVM with up to 30 qubits, and access to
more qubits can be requested. The author’s API key
gives access to 26 qubits (no upgrades were requested).

Additionally, the Forest library contains a local simu-
lator written in Python and open-sourced, known as the
Reference QVM. It is not as performant as the QVM, but
users can run circuits with as many qubits as they have
memory for on their local machines. As a general rule of
thumb, circuits with qubits numbering in the low 20s are
possible on commodity hardware. The reference QVM
must be installed separately, which can be done with pip
according to:

1 pip i n s t a l l re ferenceqvm

To use the Reference QVM instead of the QVM, one sim-
ply imports api from referenceqvm instead of from pyQuil:

1 import r e f e r e n c e ap i . ap i as api

B. QISKit

The Quantum Information Software Kit, or QISKit, is
an open-source software development kit (SDK) for work-
ing with the OpenQASM quantum language and quan-
tum processors in the IBM Q experience. It is available in
Python, JavaScript, and Swift, but here we only discuss
the Python version.

a. Requirements and Installation QISKit is avail-
able on macOS, Windows, and Linux. To install QISKit,
Python 3.5+ is required. Additional helpful, but not re-
quired, components are Jupyter notebooks for tutorials

QISKit Overview
Institution IBM

First Release 0.1 on March 7, 2017
Current Version 0.5.4 on June 11, 2018
Open Source? 3

License Apache-2.0
Homepage Home
Github Git

Documentation
Docs, Tutorial

Notebooks, Hardware
OS Mac, Windows, Linux

Requirements

Python 3.5+, Jupyter
Notebooks (for

tutorials), Anaconda 3
(recommended)

Classical Language Python
Quantum Language OpenQASM

Quantum Hardware

IBMQX2 (5 qubits),
IBMQX4 (5 qubits),
IBMQX5 (16 qubits),

QS1 1 (20 qubits)

Simulator
∼25 qubits locally, 30

through cloud

Features

Generate QASM code,
topology specific

compiler, community
Slack channel, circuit

drawer, ACQUA library

and the Anaconda 3 Python distribution, which comes
with all the necessary dependencies pre-installed.

The easiest way to install QISKit is by using the
Python package manager pip. At a command line, we
install the software by typing:

1 pip i n s t a l l q i s k i t

Note that pip automatically handles all dependencies
and will always install the latest version. Users who may
be interested in contributing to QISKit can install the
source code by entering the following at a command line,
assuming git is installed:

1 g i t c l one https : // github . com/QISKit/ q i s k i t−core
2 cd q i s k i t−core
3 python −m pip i n s t a l l −e .

For information on contributing, see the contribution
guidelines in the online documentation on GitHub.
b. Documentation and Tutorials The doc-

umentation of QISKit can be found online at
https://qiskit.org/documentation/. This contains
instructions on installation and setup, example pro-
grams and connecting to real quantum devices, project
organization, QISKit overview, and developer documen-
tation. Background information on quantum computing
can also be found for users who are new to the field. A
very nice resource is the SDK reference where users can
find information on the source code documentation.

QISKit also contains a large number of tutorial note-
books in a separate GitHub repository (similar to pyQuil
and Grove). These include entangled states; standard al-
gorithms like Deutsch-Josza, Grover’s algorithm, phase

https://github.com/rigetticomputing/reference-qvm
https://qiskit.org/
https://github.com/QISKit
https://qiskit.org/documentation/
https://github.com/QISKit/qiskit-tutorial
https://github.com/QISKit/qiskit-tutorial
https://github.com/QISKit/ibmqx-backend-information/tree/master/backends
https://www.python.org/downloads/
https://jupyter.readthedocs.io/en/latest/install.html
https://jupyter.readthedocs.io/en/latest/install.html
https://www.anaconda.com/download/
https://github.com/QISKit/openqasm
https://qiskit.org/documentation/
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estimation, and the quantum Fourier transform; more
advanced algorithms like the variational quantum eigen-
solver and applications to fermionic Hamiltonians; and
even some fun games like quantum battleships. Addi-
tionally, the ACQUA library (Algorithms and Circuits
for QUantum Applications) contains cross-domain algo-
rithms for chemistry and artificial intelligence with nu-
merous examples.

There is also very detailed documentation for each of
the four quantum backends containing information on
connectivity, coherence times, and gate application time.
Lastly, we mention the IBM Q experience website and
user guides. The website contains a graphical quantum
circuit interface where users can drag and drop gates onto
the circuit, which is useful for learning about quantum
circuits. The user guides contain more instruction on
quantum computing and the QISKit language.

c. Syntax The syntax for QISKit can be seen in the
following example program. In contrast to pyQuil, one
has to explicitly allocate quantum and classical registers.
We show below the program for the random number cir-
cuit in QISKit:

1 # random number genera tor c i r c u i t in QISKit
2 from q i s k i t import QuantumRegister ,

C l a s s i c a lR e g i s t e r , QuantumCircuit , execute
3

4 qreg = QuantumRegister (1 )
5 creg = C l a s s i c a lR e g i s t e r (1 )
6 q c i r c u i t = QuantumCircuit ( qreg , c reg )
7

8 q c i r c u i t . h ( qreg [ 0 ] )
9 q c i r c u i t . measure ( qreg [ 0 ] , c reg [ 0 ] )

10

11 r e s u l t = execute ( q c i r c u i t , ’ l o c a l qa sm s imu la to r
’ ) . r e s u l t ( )

12 pr in t ( r e s u l t . g e t count s ( ) )

Listing 4: QISKit code for a random number generator.

In line 2 we import the tools to create quantum and clas-
sical registers, a quantum circuit, and a function to exe-
cute that circuit. We then create a quantum register with
one qubit (line 4), classical register with one bit (line 5),
and a quantum circuit with both of these registers (line
6). Now that we have a circuit created, we begin pro-
viding instructions: in line 8, we do a Hadamard gate to
the zeroth qubit in our quantum register (which is the
only qubit in the quantum register); in line 9, we mea-
sure this qubit into the classical bit indexed by zero in
our classical register (which is the only bit in the classical
register) [45]. Now that we have built a quantum circuit,
we execute it in line 11 and print out the result in line
12. By printing result.get counts(), we print the “counts”
of the circuit—that is, a dictionary of outputs and how
many times we received each output. For our case, the
only possible outputs are 0 or 1, and a sample output of
the above program is {’0’: 532, ’1’: 492}, indicating that
we got 532 instances of 0 and 492 instances of 1. (The
default number of times to run the circuit, called shots
in QISKit, is 1024.)

FIG. 3: A schematic diagram showing the topology of
IBMQX5, taken from [30]. Directional arrows show

entanglement capabilities. For example, we could perform
the operation (in QASM) cx Q1, Q2 but not the operation

cx Q2, Q1. To do the latter, a compiler translates the
instruction into equivalent gates that are performable in the

topology and gate set.

d. Quantum Language OpenQASM (open quantum
assembly language [25], which we may refer to simply as
QASM) is the quantum language that provides instruc-
tion to the actual quantum devices, analogous to assem-
bly language on classical computers. The general syntax
of QASM is gate qubit where gate specifies a quantum
gate operation and qubit labels a qubit. QISKit has a
feature for generating QASM code from a circuit. In the
above random number circuit example, we could add the
line

1 pr in t ( q c i r c u i t . qasm ( ) )

at the end to produce the QASM code for the circuit,
shown below:

1 OPENQASM 2 . 0 ;
2 i n c l ude ” q e l i b 1 . inc ” ;
3 qreg q0 [ 1 ] ;
4 creg c0 [ 1 ] ;
5 h q0 [ 0 ] ;
6 measure q0 [ 0 ] −> c0 [ 0 ] ;

Listing 5: OpenQASM code for a random number generator.

The first two lines are included in every QASM file.
Line 3 (4) creates a quantum (classical) register, and lines
5 and 6 give the instructions for the circuit. It is possible
to write small circuits like this directly in OpenQASM,
but for larger circuits it is nice to have the tools in QISKit
to cleanly and efficiently program quantum computers.
e. Quantum Hardware There is a vast amount of

documentation for the quantum backends supported by
QISKit. These devices include IBMQX2 (5 qubits), IB-
MQX4 (5 qubits), IBMQX5 (16 qubits), and QS1 1 (20
qubits, usable only by members of the IBM Q network).
Documentation for each is available on GitHub. We dis-
cuss in detail IBMQX5 in Section III B, the topology of
which is shown in Figure 3.
f. Simulator IBM includes several quantum circuit

simulators that run locally or on cloud computing re-
sources. These simulators include a local unitary simu-
lator—which applies the entire unitary matrix of the cir-
cuit and is limited practically to about 12 qubits—and a
state vector simulator—which performs the best locally
and can simulate circuits of up to 25 qubits. For now
we just quote qubit number, but we discuss the perfor-
mance of the state vector simulator and compare it to
other simulators in Section III D.

https://quantumexperience.ng.bluemix.net/qx/experience
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C. ProjectQ

ProjectQ is an open source software framework for
quantum computing featuring connectivity to IBM’s
quantum backends, a high performance quantum com-
puter simulator, and several library plug-ins. The first
release of ProjectQ was developed by Thomas Häner and
Damien S. Steiger in the group of Matthias Troyer at
ETH Zürich, and it has since picked up more contribu-
tors.

ProjectQ Overview
Institution ETH Zurich

First Release v0.1.0 on Jan 3, 2017
Current Version v0.3.6 on Feb 6, 2018
Open Source? 3

License Apache-2.0
Homepage Home
Github Git

Documentation
Docs, Example

Programs, Paper
OS Mac, Windows, Linux

Requirements Python 2 or 3
Classical Language Python
Quantum Language none/hybrid

Quantum Hardware
no dedicated hardware,

can connect to IBM
backends

Simulator ∼28 qubits locally

Features
Draw circuits, connect

to IBM backends,
multiple library plug-ins

a. Requirements and Installation A current version
of Python, either 2.7 or 3.4+, is required to install Pro-
jectQ. The documentation contains detailed information
on installation for each operating system. In our envi-
ronment, we do the recommended pip install

1 python −m pip i n s t a l l −−user p ro j e c tq

to successfully install the software (as a user). To in-
stall via the source code, we can run the following at a
command line:

1 g i t c l one https : // github . com/ProjectQ−Framework/
ProjectQ

2 cd p ro j e c tq
3 python −m pip i n s t a l l −−user .

As with previous programs, this method is recommended
for users who may want to contribute to the source code.
For instructions on doing so, see the contribution guide-
lines on the ProjectQ GitHub page.

b. Documentation and Tutorials ProjectQ has very
good documentation on installation. However, we find
the remaining documentation to be a little sparse. The
online tutorial provides instruction on basic syntax and
example quantum programs (random numbers, telepor-
tation, and Shor’s factoring algorithm). The rest is the
code documentation/reference with information on the
structure of the code and each additional module, in-
cluding functions and classes. The papers [18, 19] are a

good reference and resource, but it is more likely that the
online documentation will be more up to date.

c. Syntax The syntax of ProjectQ is clear and effi-
cient, though it may take some getting used to. There
is no quantum assembly language for ProjectQ (because
there is no ProjectQ specific quantum backend), but the
classical language is sort of a hybrid classical/quantum
language. To elaborate, an example program to produce
a random bit is shown below:

1 # random number genera tor c i r c u i t in ProjectQ
2 from pro j e c tq import MainEngine
3 import p ro j e c tq . ops as ops
4

5 eng = MainEngine ( )
6 qb i t s = eng . a l l o c a t e qu r e g (1 )
7

8 ops .H | qb i t s [ 0 ]
9 ops . Measure | qb i t s [ 0 ]

10

11 eng . f l u s h ( )
12 pr in t ( i n t ( qb i t s [ 0 ] ) )

Listing 6: ProjectQ code for a random number generator.

In line 2, we import the necessary module to make a
quantum circuit, and in line 3 we import gate operations.
In line 5 we allocate and engine from the MainEngine, and
in line 6 we allocate a one qubit register. In lines 8 and 9
we provide the circuit instructions: first do a Hadamard
gate on the qubit in the register indexed with a 0, then
measure this qubit. This is where the “quantum syntax”
appears within the classically scripted language. The
general formulation is operation | qubit with the vertical
line between the two resemblant of Dirac notation, H|0〉,
for example. We then flush the engine which pushes it to
a backend and ensures it gets evaluated/simulated. Un-
like pyQuil and QISKit, in ProjectQ one does not specify
a classical register when making a measurement. Instead,
when we measure qbits[0] in line 9, we get it’s value by
converting it to an int when we print it out in line 12.

d. Quantum Language As mentioned, ProjectQ
does not have its own dedicated quantum language. If
one is using ProjectQ in conjunction with an IBM back-
end, the code will eventually get converted to Open-
QASM, IBM’s quantum assembly language.

e. Quantum Hardware ProjectQ does not have its
own dedicated quantum computer. One is able to use
IBM’s quantum backends when using ProjectQ, however.

f. Simulator ProjectQ comes with a fast simulator
written in C++, which will be installed by default unless
an error occurs, in which case a slower Python simula-
tor will be installed. Additionally, ProjectQ includes a
ClassicalSimulator for efficiently simulating stabilizer cir-
cuits—i.e., circuits that consist of gates from the nor-
malizer of the Pauli group, which can be generated from
Hadmard, CNOT, and phase gates [26]. This simulator
is able to handle thousands of qubits to check, e.g., Tof-
foli adder circuits for specific inputs. However, stabilizer
circuits are not universal, so we focus our benchmark and
testing on the C++ Simulator.

https://www.ethz.ch/en.html
https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
http://projectq.readthedocs.io/en/latest/
https://github.com/ProjectQ-Framework/ProjectQ/tree/master/examples
https://github.com/ProjectQ-Framework/ProjectQ/tree/master/examples
https://arxiv.org/abs/1612.08091
https://www.python.org/downloads/
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ProjectQ’s C++ Simulator is sophisticated and fast.
On the author’s computer [23] (the maximum qubit num-
ber is limited by the user’s local memory, as mentioned),
it can handle circuits with 26 qubits of depth 5 in under
a minute and circuits of 28 circuits of depth 20 in just
under ten minutes. For full details, see section III D and
Figure 6.

g. ProjectQ in other Platforms ProjectQ is well-
tested, robust code and has been used for other platforms
mentioned in this paper. Specifically, pyQuil contains
ProjectQ code [27], and the kernels of Microsoft’s QDK
simulator are developed by Thomas Häner and Damian
Steiger at ETH Zurich [28], the original authors of Pro-
jectQ. (Note that this does not necessarily mean that the
QDK simulator achieves the performance of the ProjectQ
C++ simulator as the enveloping code could diminish
performance.)

D. Quantum Development Kit

Unlike the superconducting qubit technology of Rigetti
and IBM, Microsoft is betting highly on topological
qubits based on Majorana fermions. These particles have
recently been discovered [29] and promise long coher-
ence times and other desirable properties, but no func-
tional quantum computer using topological qubits cur-
rently exists. As such, Microsoft currently has no device
that users can connect to via their Quantum Develop-
ment Kit (QDK), the youngest of the four platforms fea-
tured in this paper. Nonetheless, the QDK features a new
“quantum-focused” language called Q# that has strong
integration with Visual Studio and Visual Studio Code
and can simulate quantum circuits of up to 30 qubits lo-
cally. This pre-release software was first debuted in Jan-
uary of 2018 and, while still in alpha testing, is available
on macOS, Windows, and Linux.

QDK Overview
Institution Microsoft

First Release
0.1.1712.901 on Jan 4,

2018 (pre-release)

Current Version
0.2.1802.2202 on Feb 26,

2018 (pre-release)
Open Source? 3

License MIT
Homepage Home
Github Git

Documentation Docs
OS Mac, Windows, Linux

Requirements
Visual Studio Code

(strongly recommended)
Classical Language

Q#
Quantum Language
Quantum Hardware none

Simulator
30 qubits locally, 40
through Azure cloud

Features
Built-in algorithms,
example algorithms

a. Requirements and Installation Although it is
listed as optional in the documentation, installing Visual
Studio Code is strongly recommended for all platforms.
(In this paper, we only use VS Code, but Visual Studio
is also an exceptional framework. We remain agnostic
as to which is better and use VS Code as a matter of
preference.) Once this is done, the current version of the
QDK can be installed by entering the following at a Bash
command line:

1 dotnet new − i ”Mic roso f t .Quantum .
ProjectTemplates : :0 .2 −∗ ”

To get QDK samples and libraries from the GitHub
repository (strongly recommended for all and especially
those who may wish to contribute to the QDK), one can
additionally enter:

1 g i t c l one https : // github . com/Microso f t /Quantum .
g i t

2 cd Quantum
3 code .

b. Documentation and Tutorials The above code
samples and libraries are a great way to learn the Q#
language, and the online documentation contains infor-
mation on validating a successful install, running a first
quantum program, the quantum simulator, and the Q#
standard libraries and programming language. This doc-
umentation is verbose and contains a large amount of
information; the reader can decide whether this is a plus
or minus.
c. Syntax The syntax of Q# is rather different from

the previous three languages. It closely resembles C#,
is more verbose than Python, and may have a steeper
learning curve for those not familiar with C#. Shown
below is the same random number generator circuit that
we have shown for all languages:

1 // random number generato r c i r c u i t in QDK
2 opera t i on random ( count : Int , i n i t i a l : Result )

: ( Int , Int )
3 {
4 body
5 {
6 mutable numOnes = 0 ;
7 us ing ( qub i t s = Qubit [ 1 ] )
8 {
9 f o r ( t e s t in 1 . . count )

10 {
11 Set ( i n i t i a l , qub i t s [ 0 ] ) ;
12 H( qub i t s [ 0 ] ) ;
13 l e t r e s = M ( qub i t s [ 0 ] ) ;
14

15 // count the number o f ones
16 i f ( r e s == One)
17 {
18 s e t numOnes = numOnes+1;
19 }
20 }
21 Set ( Zero , qub i t s [ 0 ] ) ;
22 }
23 // re turn s t a t i s t i c s
24 r e turn ( count − numOnes , numOnes) ;
25 }
26 }

Listing 7: Q# code for a random number generator.

https://www.microsoft.com/en-us/quantum/development-kit
https://github.com/Microsoft/Quantum
https://docs.microsoft.com/en-us/quantum/?view=qsharp-preview
https://code.visualstudio.com/?wt.mc_id=adw-brand&gclid=EAIaIQobChMI3Ijj-KGD2wIVCA1pCh0gQwnIEAAYASAAEgIRNPD_BwE
https://docs.microsoft.com/en-us/quantum/?view=qsharp-preview
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The use of brackets and keywords can perhaps make
this language a little more difficult for new users to
learn/read, but at its core the code is doing the same
circuit as the previous three examples. For brevity we
omit the code analysis. We will remark, however, that
this is one of three files needed to run this code. Above is
the .qs file for the Q# language, and we additionally need
a Driver.cs file to run the .qs code as well as a .csproj con-
taining meta-data. All in all, this example totals about
65 lines of code. Since this example can be found in the
online documentation, we do not include these programs
but refer the interested reader to the “Quickstart” tuto-
rial in the documentation.

The author would like to note that the QDK is striving
for a high-level language that abstracts from hardware
and makes it easy for users to program quantum com-
puters. As an analogy, one does not specifically write out
the adder circuit when doing addition on a classical com-
puter—this is done in a high level framework (a+b), and
the software compiles this down to the hardware level.
As the QDK is focused on developing such standards,
measuring ease of writing code based on simple exam-
ples such as a random number generator and the tele-
portation circuit (see Appendix C) may not do justice
to the overall language syntax and platform capabilities,
but we include these programs to have some degree of
consistency in our analysis.

d. Quantum Language/Hardware As mentioned,
the QDK has no current capability to connect to a real
quantum computer, and it does not have a dedicated
quantum assembly language. The Q# language can be
considered a hybrid classical/quantum language, how-
ever.

e. Simulator On the users local computer, the QDK
includes a quantum simulator that can run circuits of up
to 30 qubits. As mentioned above, kernels for QDK simu-
lators were written by developers of ProjectQ, so perfor-
mance can be expected to be similar to ProjectQ’s sim-
ulator performance. (See Section III D.) Through a paid
subscription service to Azure cloud, one can get access to
high performance computing that enables simulation of
more than 40 qubits. In the QDK documentation, how-
ever, there is currently little instruction on how to do
this.

Additionally, the QDK provides a trace simulator that
is very effective for debugging classical code that is part
of a quantum program as well as estimating the resources
required to run a given instance of a quantum program
on a quantum computer. The trace simulator allows var-
ious performance metrics for quantum algorithms con-
taining thousands of qubits. Circuits of this size are
possible because the trace simulator executes a quantum
program without actually simulating the state of a quan-
tum computer. A broad spectrum of resource estimation
is covered, including counts for Clifford gates, T-gates,
arbitrarily-specified quantum operations, etc. It also al-
lows specification of the circuit depth based on specified
gate durations. Full details of the trace simulator can be

found in the QDK documentation online.

III. COMPARISON

Now that the basics of each platform have been cov-
ered, in this section we compare each on additional as-
pects including library support, quantum hardware, and
quantum compilers. We also enumerate some notable
and useful features of each platform.

A. Library Support

We use the term “library support” to mean examples
of quantum algorithms (in tutorial programs or in doc-
umentation) or a specific function for a quantum algo-
rithm (e.g., language.DoQuantumFourierTransform(...)).
We have already touched on some of these in the previous
section. A more detailed table showing library support
for the four software platforms is shown in Figure 4.

We remark that any algorithm, of course, can be im-
plemented on any of these platforms. Here, we are high-
lighting existing functionality, which may be beneficial
for users who are new to the field or even for experienced
users who may not want to program everything them-
selves.

As can be seen from the table, pyQuil, QISKit, and
the QDK have a relatively large library support. Pro-
jectQ contains FermiLib, plugins for FermiLib, as well
as compatibility with OpenFermion, all of which are
open-source projects for quantum simulation algorithms.
All examples that work with these frameworks naturally
work with ProjectQ. Microsoft’s QDK is notable for its
number of built-in functions performing these algorithms
automatically without the user having to explicitly pro-
gram the quantum circuit. In particular, the QDK li-
braries offer detailed iterative phase estimation, an im-
portant procedure in many algorithms that can be eas-
ily realized on the QDK without sacrificing adaptivity.
QISKit is notable for its large number of tutorial note-
books on a wide range of topics from fundamental quan-
tum algorithms to didactic quantum games.

B. Quantum Hardware

In this section we discuss only pyQuil and QISKit,
since these are the only platforms with their own ded-
icated quantum hardware. Qubit quantity is an impor-
tant characterization in quantum computers, but equally
important—if not more important—is the “qubit qual-
ity.” By this, we mean coherence times (how long qubits
live before collapsing to bits), gate application times, gate
error rates, and the topology/connectivity of the qubits.
Ideally, one would have infinite coherence times, zero gate
application time, zero error rates, and all-to-all connec-
tivity. In the following paragraphs we document some of

https://docs.microsoft.com/en-us/quantum/quantum-computer-trace-simulator-1?view=qsharp-preview
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Algorithm pyQuil QISKit ProjectQ QDK
Random Number
Generator

3(T) 3(T) 3(T) 3(T)

Teleportation 3(T) 3(T) 3(T) 3(T)
Swap Test 3(T)
Deutsch-Jozsa 3(T) 3(T) 3(T)
Grover’s Algorithm 3(T) 3(T) 3(T) 3(B)
Quantum Fourier
Transform

3(T) 3(T) 3(B) 3(B)

Shor’s Algorithm 3(T) 3(D)
Bernstein Vazirani 3(T) 3(T) 3(T)
Phase Estimation 3(T) 3(T) 3(B)
Optimization/QAOA 3(T) 3(T)
Simon’s Algorithm 3(T) 3(T)
Variational Quantum
Eigensolver

3(T) 3(T) 3(P)

Amplitude
Amplification

3(T) 3(B)

Quantum Walk 3(T)
Ising Solver 3(T) 3(T)
Quantum Gradient
Descent

3(T)

Five Qubit Code 3(B)
Repetition Code 3(T)
Steane Code 3(B)
Draper Adder 3(T) 3(D)
Beauregard Adder 3(T) 3(D)
Arithmetic 3(B) 3(D)
Fermion Transforms 3(T) 3(T) 3(P)
Trotter Simulation 3(D)
Electronic Structure
(FCI, MP2, HF, etc.)

3(P)

Process Tomography 3(T) 3(T) 3(D)
Meyer-Penny Game 3(D)
Vaidman Detection
Test

3(T)

Battleships Game 3(T)
Emoji Game 3(T)
Counterfeit Coin
Game

3(T)

FIG. 4: A table showing the library support for each of the
four software platforms. By “library support,” we mean a

tutorial notebook or program (T), an example in the
documentation (D), a built-in function (B) to the language,

or a supported plug-in library (P).

the parameters of IBMQX5 and Agave, the two largest
publicly available quantum computers. For full details,
please see the online documentation of each platform.

a. IBMQX5 IBMQX5 is a superconducting qubit
quantum computer with nearest neighbor connectivity
between its 16 qubits (see Figure 3). The minimum co-
herence (T2) time is 31± 5 microseconds on qubit 0 and
the maximum is 89±17 microseconds on qubit 15. A sin-
gle qubit gate takes 80 nanoseconds to implement plus
a 10 nanosecond buffer after each pulse. CNOT gates
take about two to four times as long, ranging from 170
nanoseconds for cx q[6], q[7] to 348 nanoseconds for cx
q[3], q[14]. Single qubit gate fidelity is very good at over

99.5% fidelity for all qubits (fidelity = 1 - error). Multi-
qubit fidelity is above 94.9% for all qubit pairs in the
topology. The largest readout error is rather large at
about 12.4% with the average being around 6%. These
statistics were obtained from [30].

Lastly, we mention that to use any available quantum
computer by IBM, the user submits his/her job into a
queue, which determines when the job gets run. This is
in contrast to using Agave by Rigetti, in which users have
to request access first via an online form, then schedule
a time to get access to the device to run jobs. In the
author’s experience, this is done over email, and the staff
is very helpful.

b. Agave The Agave quantum computer consists of
8 superconducting transmon qubits with fixed capacitive
coupling and connectivity shown in Figure 2. The min-
imum coherence (T2) time is 9.2 microseconds on qubit
1 and the maximum is 15.52 microseconds on qubit 2.
The time to implement a Controlled-Z gate is between
118 and 195 nanoseconds. Single qubit gate fidelity is at
an average of 96.2% (again, fidelity = 1 - error) and min-
imum of 93.2%. Multi-qubit gate fidelity is on average
87% for all qubit-qubit pairs in the topology. Readout
errors are unknown. These statistics can be found in the
online documentation or through pyQuil.

C. Quantum Compilers

Platforms that provide connectivity to real quantum
devices must necessarily have a means of translating a
given circuit into operations the computer can under-
stand. This process is known as compilation, or more
verbosely quantum circuit compilation/quantum compi-
lation. Each computer has a basis set of gates and a
given connectivity—it is the compiler’s job to input a
given circuit and return an equivalent circuit obeying the
basis set and connectivity requirements. In this section
we only discuss QISKit and Rigetti, for these are the
platforms with real quantum computers.

The IBMQX5 basis gates are u1, u2, u3, and CNOT
where

u1(λ) =

[
1 0
0 eiλ

]
,

u2(φ, λ) =
1√
2

[
1 −eiλ
eiφ ei(λ+φ)

]
, and

u3(θ, φ, λ) =

[
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
.

Note that u1 is equivalent to a frame change Rz(θ) up
to a global phase and u2 and u3 are a sequence of frame
changes and pulses Rx(π/2)

u2(φ, λ) = Rz(φ+ π/2)Rx(π/2)Rz(λ− π/2),

u3(θ, φ, λ) = Rz(φ+ 3π)Rx(π/2)Rz(θ + π)Rx(π/2)Rz(λ)
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FIG. 5: An example of a quantum circuit (top left) compiled by pyQuil for Rigetti’s 8 qubit Agave processor (top right), and
the same circuit compiled by QISKit for IBM’s 16 qubit IBMQX5. The qubits used on Agave are 0, 1, and 2 (see Figure 2),
and the qubits used on IBMQX5 are 0, 1, and 2. Note that neither compiler can directly implement a Hadamard gate H but

produces these via products of rotation gates Rx and Rz. A CNOT gate can be implement on IBMQX5, but not on
Agave—here, pyQuil must express CNOT in terms of Controlled-Z and rotations. These circuits were made with ProjectQ.

with the rotation gates being the standard

Rx(θ) := e−iθX/2 =

[
cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

]
,

Rz(θ) := e−iθZ/2 =

[
e−iθ/2 0

0 eiθ/2

]
where X and Z are the usual Pauli matrices. On the IBM
quantum computers, Rz(θ) is a “virtual gate,” meaning
that nothing is actually done to the qubit physically. In-
stead, since the qubits are naturally rotating about the
z-axis, doing a z rotation simply amounts to changing
the clock, or frame, of the internal (classical) software
keeping track of the qubit.

The topology of IBMQX5 is shown in Figure 3. This
connectivity determines which qubits it is possible to na-
tively perform CNOT gates, where a matrix representa-
tion of CNOT is given by

CNOT :=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Note that it is possible to perform CNOT between any
qubits in QISKit, but when the program is compiled
down to the hardware level, the QISKit compiler con-
verts this into a sequence of CNOT gates allowed in the
connectivity. The QISKit compiler allows one to spec-
ify an arbitrary basis gate set and topology, as well as
providing a set of parameters such as noise.

For Rigetti’s 8 qubit Agave processor, the basis gates
are Rx(kπ/2) for k ∈ Z, Rz(θ), and Controlled-Z. The
single qubit rotation gates are as above, and the two
qubit Controlled-Z (CZ) is given by

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

The topology of Agave is shown in Figure 2. Like QISKit,
pyQuil’s compiler also allows one to specify a target in-
struction set architecture (basis gate set and computer
topology).

An example of the same quantum circuit compiled by
both of these platforms is shown in Figure 5. Here, with
pyQuil we compile to the Agave specifications and with
QISKit we compile to the IBMQX5 specifications. As
can be seen, QISKit produces a longer circuit (i.e., has
greater depth) than pyQuil. It is not appropriate to claim
one compiler is superior because of this example, how-
ever. Circuits that are in the language IBMQX5 under-
stands would naturally produce a shorter depth circuit
than pyQuil, and vice versa. It is known that any quan-
tum circuit (unitary matrix) can be decomposed into a
sequence of one and two qubit gates (see, e.g., [32]), but
in general this takes exponentially many gates. It is cur-
rently a question of significant interest [46] to find an
optimal compiler for a given topology.

D. Simulator Performance

Not all software platforms provide connectivity to real
quantum computers, but any worthwhile program in-
cludes a quantum circuit simulator. This is a program
that runs on a classical CPU that mimics (i.e., simulates)
the evolution of a quantum computer. As with quantum
hardware, it is important to look at not just how many
qubits a simulator can handle but also how quickly it
can process them, in addition to other parameters like
adding noise to emulate quantum computers, etc. In this
section, we evaluate the performance of QISKit’s local
state vector simulator and ProjectQ’s local C++ simu-
lator using the program listed in Appendix B. First, we
mention the performance of pyQuil’s QVM simulator.
a. pyQuil The Rigetti simulator, called the Quan-

tum Virtual Machine (QVM), does not run on the users
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local computer but rather through computing resources
in the cloud. As mentioned, this requires an API key to
connect to. Most API keys give access to 30 qubits ini-
tially, and more can be requested. The author is able to
simulate a 16 qubit circuit of depth 10 in 2.61 seconds on
average. A circuit size of 23 qubits of depth 10 was sim-
ulated in 56.33 seconds, but no larger circuits could be
simulated because the QVM terminates after one minute
of processing with the author’s current API access key.
Because of this termination time, and because of the fact
that the QVM does not run on the user’s local computer,
we do not test the performance of the QVM in the same
way we test ProjectQ and QISKit’s simulators.

The QVM contains sophisticated and flexible noise
models to emulate the evolution of an actual quantum
computer. This is key for developing short depth al-
gorithms on near term quantum computers, as well as
for predicting the output of a particular quantum chip.
Users can define arbitrary noise models to test programs,
in particular define noisy gates, add decoherence noise,
and model readout noise. For full details and helpful
example programs, see the Noise and Quantum Compu-
tation section of pyQuil’s documentation.

b. QISKit QISKit has several quantum simulators
available as backends: the local qasm simulator, the lo-
cal state vector simulator, the ibmq qasm simulator, the
local unitary simulator, and the local clifford simulator.
The differences in these simulators is the methodology
of simulating quantum circuits. The unitary simulator
implements basic (unitary) matrix multiplication and is
limited quickly by memory. The state vector simulator
does not store the full unitary matrix but only the state
vector and single/multi qubit gate to apply. Both meth-
ods are discussed in [33], and [34–36] contains details on
other techniques. Similar to the discussion of the Clas-
sicalSimulator in ProjectQ, the local clifford simulator is
able to efficiently simulate stabilizer circuits, which are
not universal.

Using the local unitary simulator, a circuit of 10 qubits
on depth 10 is simulated in 23.55 seconds. Adding one
more qubit increases this time by approximately a fac-
tor of ten to 239.97 seconds, and at 12 qubits the sim-
ulator timed out after 1000 seconds (about 17 minutes).
This simulator quickly reaches long simulation times and
memory limitations because for n qubits, the unitary ma-
trix of size 2n × 2n has to be stored in memory.

The state vector simulator significantly outperforms
the unitary simulator. We are able to simulate circuits
of 25 qubits in just over three minutes. Circuits of up
to 20 qubits with depth up to thirty are all simulated
in under five seconds. See Figures 6 and 7 for complete
details.

c. ProjectQ ProjectQ comes with a high perfor-
mance C++ simulator that performed the best in our
local testing. The maximum size circuit we were able to
successfully simulate was 28 qubits, which took just un-
der ten minutes (569.71 seconds) with a circuit of depth
20. For implementation details, see [18]. For the com-

QISKit State Vector Simulator Performance

ProjectQ C++ Simulator Performance

FIG. 6: Plots of the performances of QISKit’s local state
vector simulator (top) and ProjectQ’s C++ simulator

(bottom), showing runtime in seconds for a given number of
qubits (horizontal axis) and circuit depth (vertical axis).

Darker green shows shorter times and brighter yellow shows
longer times (color scales are not the same for both plots).

For details more details on the testing, see Appendix B.

FIG. 7: The circuit used for testing the ProjectQ C++
simulator and QISKit local state vector simulator, shown
here on four qubits. In the actual testing, the pattern of
Hadamard gates,

√
X gates, then the sequence of CNOT

gates defines one level in the circuit. This pattern is
repeated until the desired depth is reached. This image was

produced using ProjectQ.

plete performance and testing, see Figures 6 and 7.

E. Features

A nice feature of pyQuil is Grove, a separate GitHub
repository that can be installed containing tutorials and

http://pyquil.readthedocs.io/en/latest/noise.html
http://pyquil.readthedocs.io/en/latest/noise.html
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example algorithms using pyQuil. Rigetti is also building
a solid community of users as exemplified by their dedi-
cated Slack channel for Rigetti Forest. The Quil compiler
and it’s ability to compile for any given instruction set
architecture (topology and gate basis) are also nice fea-
tures. Lastly, pyQuil is compatible with OpenFermion
[37], an open-source Python package for compiling and
analyzing quantum algorithms to simulate fermionic sys-
tems, including quantum chemistry.

QISKit is also available in JavaScript and Swift for
users who may have experience in these languages. For
beginners, Python is a very good starter programming
language because of its easy and intuitive syntax. Like
Grove, QISKit also contains a dedicated repository of
example algorithms and tutorials. Additionally, the AC-
QUA library in QISKit contains numerous algorithms
for quantum chemistry and artificial intelligence. This
library can be run through a graphical user interface or
from a command line interface. IBM is second to none for
building an active community of students and researchers
using their platform. The company boasts of over 3 mil-
lion remote executions on cloud quantum computing re-
sources using QISKit run by more than 80,000 registered
users, and there have been more than 60 research pub-
lications written using the technology [31]. QISKit also
has a dedicated Slack channel with the ability to see jobs
in the queue, a useful feature for determining how long a
job submission will take to run. Additionally, the newest
release of QISKit contains a built-in circuit drawer.

Likewise, ProjectQ contains a circuit drawer. By
adding just a few lines of code to programs, one can gen-
erate TikZ code to produce high quality TEX images. All
quantum circuit diagrams in this paper were made using
ProjectQ. The local simulator of ProjectQ is also a great
feature as it has very high performance capabilities. Al-
though ProjectQ has no dedicated quantum hardware
of its own, users are able to connect to IBM’s quantum
hardware. Additionally, ProjectQ has multiple library
plug-ins including OpenFermion, as mentioned above.

The QDK was available exclusively on Windows un-
til it received support on macOS and Linux in Febru-
ary 2018. The capability to implement quantum algo-
rithms without explicitly programming the circuit is a
nice feature of the QDK, and there are also many good
tutorials in the documentation and examples folder for
quantum algorithms. It is also notable that Q# pro-
vides auto-generation features for, e.g., the adjoint or
controlled version of a quantum operation. In a more
general sense, the QDK emphasizes and offers important
tools for productive quantum algorithm development in-
cluding the testing of quantum programs, estimating re-
source requirements, programming on different models
of quantum computation targeted by different hardware,
and ensuring the correctness of quantum programs at
compile time. These aspects are key in moving towards
high-level quantum programming languages.

IV. DISCUSSION AND CONCLUSIONS

At this point, we hope that the reader has enough in-
formation and understanding to make an informed deci-
sion of what quantum software platform(s) is (are) right
for him/her. A next step is to begin reading the docu-
mentation of a platform, install it, and begin coding. In
a short amount of time one can begin running algorithms
on real quantum devices and begin researching/develop-
ing algorithms in their respective field.

For those who may be still undecided, we offer the
following subjective suggestions:

• For those whose main objective is using quantum
computers, QISKit (or ProjectQ) or pyQuil is the
obvious choice.

• For those who are new to quantum computing,
QISKit, pyQuil, or the QDK is a good choice.

• For those who have little programming experience,
one of the Python platforms is a good choice.

• For those who are familiar with or prefer C/C#
style syntax, the QDK is a good choice.

• For those wishing to develop, prototype, and test
algorithms, ProjectQ is a good choice.

• For those who wish to run hybrid quantum-classical
algorithms, pyQuil is a great choice for it’s dedi-
cated hardware time scheduling.

• For those who are interested in continuous variable
quantum computing, see Strawberry Fields in Ap-
pendix A.

Again, these are simply suggestions and we encourage
the reader to make his/her own choice. All platforms are
significant achievements in the field of quantum comput-
ing and excellent utilities for students and researchers to
program real quantum computers. As a final remark, we
note that there are additional quantum software pack-
ages being developed, a few of which are mentioned in
Appendix A.
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As mentioned in the main text, it would be counter-
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current list, see the ‘Players’ page on Quantum Comput-

ing Report [22]. Our selections in this paper were largely
guided by the ability for general users to connect to and
use real quantum devices, as well as unavoidable subjec-
tive factors like the author’s experience. Our omission of
software/companies is not a statement to their disabil-
ity—here, we briefly mention a few.
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Python library for designing, simulating, and optimiz-
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qubits, or “qumodes” (as opposed to the discrete vari-
able qubits), and though the company has not yet an-
nounced an available quantum chip for general users, one
may be available in the near future. Strawberry Fields
has a built in simulators using Numpy and TensorFlow,
and a quantum programming language called Blackbird.
One can download the source code from GitHub, and ex-
ample tutorials can be found for quantum teleportation,
boson sampling, and machine learning. Additionally, the
Xanadu website https://www.xanadu.ai/ contains an in-
teractive quantum circuit where users can drag and drop
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in College Park, Maryland and headed by researchers
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ton emission have also been demonstrated.
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to contact IonQ and request access. Several algorithms
ranging from machine learning to game theory have been
run by experimenters. To read more about the company,
please visit their website [39].
c. D-Wave Systems D-Wave [40] is perhaps the old-

est quantum computing company. Founded in 1999 in
Vancouver, Canada, D-Wave makes special types of adi-
abatic quantum computers, known as a quantum an-
nealers, which solve for the ground-state energy of the
transverse-field Ising model
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D-Wave has manufactured several computers, the most
recent being 2048 qubits, and has extensive software in
Matlab, C/C++, and Python for programming them.
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Because these quantum computers do not operate on the
gate/circuit model of quantum computing, we did not
include D-Wave in the main body of the text. Omitting
D-Wave altogether, however, would not give an accurate
picture of the current quantum computing landscape.

Appendix B: Testing Simulator Performance

Below is the listing of the program for testing the Pro-
jectQ C++ local simulator performance. These tests
were performed on a Dell XPS 13 Developer Edition run-
ning 64 bit Ubuntu 16.04 LTS with 8 GB RAM and an
Intel Core i7-8550U CPU at 1.80 GHz.

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # imports
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 from pro j e c tq import MainEngine
6 import p ro j e c tq . ops as ops
7 from pro j e c tq . backends import Simulator
8 import sys
9 import time

10

11 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 # number o f qub i t s and depth
13 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14

15 i f l en ( sys . argv ) > 1 :
16 n = in t ( sys . argv [ 1 ] )
17 e l s e :
18 n = 16
19

20 i f l en ( sys . argv ) > 1 :
21 depth = in t ( sys . argv [ 2 ] )
22 e l s e :
23 depth = 10
24

25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 # engine and qubit r e g i s t e r
27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28

29 eng = MainEngine ( backend=Simulator ( g a t e f u s i o n=
True ) , e n g i n e l i s t = [ ] )

30 qb i t s = eng . a l l o c a t e qu r e g (n)
31

32 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 # c i r c u i t
34 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35

36 # timing −− get the s t a r t time
37 s t a r t = time . time ( )
38

39 # random c i r c u i t
40 f o r l e v e l in range ( depth ) :
41 f o r q in qb i t s :
42 ops .H | q
43 ops . SqrtX | q
44 i f q != qb i t s [ 0 ] :
45 ops .CNOT | (q , qb i t s [ 0 ] )
46

47 # measure
48 f o r q in qb i t s :
49 ops . Measure | q
50

51 # f l u s h the eng ine
52 eng . f l u s h ( )

53

54 # timing −− get the end time
55 runtime = time . time ( ) − s t a r t
56

57 # pr in t out the runtime
58 pr in t (n , depth , runtime )

The circuit, which was randomly selected, is shown
in Figure 7. We remark that the QISKit simulator
was tested on an identical circuit—we omit the code for
brevity.

Appendix C: Example Programs: The Teleportation
Circuit

In this section we show programs for the quantum tele-
portation circuit in each of the four languages for a side
by side comparison. We remark that the QDK program
shown is one of three programs needed to run the cir-
cuit, as discussed in the main body. The teleportation
circuit is standard in quantum computing and sends an
unknown state from one qubit—conventionally the first
or top qubit in a circuit—to another—conventionally the
last or bottom qubit in a circuit. Background informa-
tion on this process can be found in any standard quan-
tum computing or quantum mechanics resource. This
quantum circuit is more involved than the very small
programs shown in the main text and demonstrates some
slightly more advanced features of each language—e.g.,
performing conditional operations.

For completeness, we include a circuit diagram to make
it clearer what the programs are doing. Unlike the main
body of the text, this figure was made using the new
circuit drawer released in the latest version of QISKit.

FIG. 8: The teleportation circuit produced with the
circuit drawer released in QISKit v0.5.4.
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pyQuil QISKit

1 #!/ usr /bin /env python3
2 # −∗− coding : utf−8 −∗−
3

4 # ========================================
5 # te l e p o r t . py
6 #
7 # Telepor ta t i on c i r c u i t in pyQuil .
8 # ========================================
9

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 # imports
12 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13

14 from pyqu i l . q u i l import Program
15 from pyqu i l import api
16 import pyqu i l . ga te s as gate
17

18 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 # program and s imulato r
20 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 qprog = Program ( )
23 qvm = api . QVMConnection ( )
24

25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 # te l e p o r t a t i o n c i r c u i t
27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28

29 # te l e p o r t |1> to qubit th ree
30 qprog += gate s .X(0)
31

32 # main c i r c u i t
33 qprog += [ gate s .H(1) ,
34 gate s .CNOT(1 , 2) ,
35 gate s .CNOT(0 , 1) ,
36 gate s .H(0) ,
37 gate s .MEASURE(0 , 0) ,
38 gate s .MEASURE(1 , 1) ]
39

40 # cond i t i o na l ope ra t i on s
41 qprog . i f t h e n (0 , ga te s . Z(2 ) )
42 qprog . i f t h e n (1 , ga te s .X(2) )
43

44 # measure qubit three
45 qprog . measure (2 , 2)
46

47 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 # run the c i r c u i t and pr in t the r e s u l t s
49 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50

51 pr in t (qvm. run ( qprog ) )
52

53 # opt i ona l l y p r i n t the qu i l code
54 pr in t ( qprog )

1 #!/ usr /bin /env python3
2 # −∗− coding : utf−8 −∗−
3

4 # ========================================
5 # te l e p o r t . py
6 #
7 # Telepor ta t i on c i r c u i t in QISKit .
8 # ========================================
9

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 # imports
12 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13

14 from q i s k i t import QuantumRegister ,
C l a s s i c a lR e g i s t e r , QuantumCircuit ,
execute

15

16 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 # r e g i s t e r s and quantum c i r c u i t
18 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

20 qreg = QuantumRegister (3 )
21 creg = C l a s s i c a lR e g i s t e r (3 )
22 q c i r c u i t = QuantumCircuit ( qreg , c reg )
23

24 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 # do the c i r c u i t
26 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27

28 # te l e p o r t |1> to qubit th ree
29 q c i r c u i t . x ( qreg [ 0 ] )
30

31 # main c i r c u i t
32 q c i r c u i t . h ( qreg [ 0 ] )
33 q c i r c u i t . cx ( qreg [ 1 ] , qreg [ 2 ] )
34 q c i r c u i t . cx ( qreg [ 0 ] , qreg [ 1 ] )
35 q c i r c u i t . h ( qreg [ 0 ] )
36 q c i r c u i t . measure ( qreg [ 0 ] , c reg [ 0 ] )
37 q c i r c u i t . measure ( qreg [ 1 ] , c reg [ 1 ] )
38

39 # cond i t i o na l ope ra t i on s
40 q c i r c u i t . z ( qreg [ 2 ] ) . c i f ( c reg [ 0 ] [ 0 ] , 1)
41 q c i r c u i t . x ( qreg [ 2 ] ) . c i f ( c reg [ 1 ] [ 0 ] , 1)
42

43 # measure qubit three
44 q c i r c u i t . measure ( qreg [ 2 ] , c reg [ 2 ] )
45

46 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 # run the c i r c u i t and pr in t the r e s u l t s
48 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 r e s u l t = execute ( q c i r c u i t , ’

l o c a l qa sm s imu la to r ’ ) . r e s u l t ( )
50 counts = r e s u l t . g e t count s ( )
51

52 pr in t ( counts )
53

54 # opt i ona l l y p r i n t the qasm code
55 pr in t ( q c i r c u i t . qasm ( ) )
56

57 # opt i ona l l y draw the c i r c u i t
58 from q i s k i t . t o o l s . v i s u a l i z a t i o n import

c i r c u i t d r awe r
59 c i r c u i t d r awe r ( q c i r c u i t )
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1 #!/ usr /bin /env python3
2 # −∗− coding : utf−8 −∗−
3

4 # ========================================
5 # te l e p o r t . py
6 #
7 # Telepor ta t i on c i r c u i t in ProjectQ .
8 # ========================================
9

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 # imports
12 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 from pro j e c tq import MainEngine
14 from pro j e c tq . meta import Control
15 import p ro j e c tq . ops as ops
16

17 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 # engine and qubit r e g i s t e r
19 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20

21 # engine
22 eng = MainEngine ( )
23

24 # a l l o c a t e qubit r e g i s t e r
25 qb i t s = eng . a l l o c a t e qu r e g (3 )
26

27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 # te l e p o r t a t i o n c i r c u i t
29 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30

31 # te l e p o r t |1> to qubit th ree
32 ops .X | qb i t s [ 0 ]
33

34 # main c i r c u i t
35 ops .H | qb i t s [ 1 ]
36 ops .CNOT | ( qb i t s [ 1 ] , qb i t s [ 2 ] )
37 ops .CNOT | ( qb i t s [ 0 ] , qb i t s [ 1 ] )
38 ops .H | qb i t s [ 0 ]
39 ops . Measure | ( qb i t s [ 0 ] , qb i t s [ 1 ] )
40

41 # cond i t i o na l ope ra t i on s
42 with Control ( eng , qb i t s [ 1 ] ) :
43 ops .X | qb i t s [ 2 ]
44 with Control ( eng , qb i t s [ 1 ] ) :
45 ops . Z | qb i t s [ 2 ]
46

47 # measure qubit three
48 ops . Measure | qb i t s [ 2 ]
49

50 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 # run the c i r c u i t and pr in t the r e s u l t s
52 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53

54 eng . f l u s h ( )
55 pr in t ( ”Measured : ” , i n t ( qb i t s [ 2 ] ) )

1 // =========================================
2 // t e l e p o r t . qs
3 //
4 // Te l epor ta t i on c i r c u i t in QDK.
5 // =========================================
6

7 opera t i on Teleport (msg : Qubit , the re :
Qubit ) : ( ) {

8 body {
9

10 us ing ( r e g i s t e r = Qubit [ 1 ] ) {
11 // get a u x i l i a r y qubit to

prepare f o r t e l e p o r t a t i o n
12 l e t here = r e g i s t e r [ 0 ] ;
13

14 // main c i r c u i t
15 H( here ) ;
16 CNOT( here , the re ) ;
17 CNOT(msg , here ) ;
18 H(msg) ;
19

20 // c ond i t i o na l ope ra t i on s
21 i f (M(msg) == One) { Z(

the re ) ; }
22 i f (M( here ) == One) { X(

there ) ; }
23

24 // r e s e t the ” here ” qubit
25 Reset ( here ) ;
26 }
27

28 }
29 }
30

31 opera t i on Te l epor tC la s s i ca lMes sage (
message : Bool ) : Bool {

32 body {
33 mutable measurement = f a l s e ;
34

35 us ing ( r e g i s t e r = Qubit [ 2 ] ) {
36 // two qub i t s
37 l e t msg = r e g i s t e r [ 0 ] ;
38 l e t the re = r e g i s t e r [ 1 ] ;
39

40 // encode message to send
41 i f ( message ) { X(msg) ; }
42

43 // do the t e l e p o r t a t i o n
44 Teleport (msg , the re ) ;
45

46 // check what message was
sent

47 i f (M( the re ) == One) { s e t
measurement = true ; }

48

49 // r e s e t a l l qub i t s
50 ResetAl l ( r e g i s t e r ) ;
51 }
52

53 r e turn measurement ;
54 }
55 }
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