One of the best sources for initial education on the basics of Quantum Computing is Quantum Computing for the Determined by Michael Nielsen. This consists of 22 short videos that discusses The Basics, Superdense Coding, Quantum Teleportation, and The Postulates of Quantum Mechanics. Highly recommended.

Michael Nielsen and Andy Matuschak are developing a new online course  called Quantum computing for the very curious using a new experimental mnemonic medium designed to make it almost effortless to remember what you read.  The first episode has just been posted with additional ones coming soon.

IBM is providing an online, open-source textbook called  Learn Quantum Computation Using Qiskit that will connect theory with practice and help students explore practical problem sets that can run on real quantum systems. IBM has dozens of different videos available on IBM’s YouTube Qiskit channel.  A number of different playlists are available covering topics including Coding with Qiskit, 1 Minute Qiskit, Quantum Fundamentals, Circuit Sessions, Quantum Information Science Seminar Series and others.

Q-CTRL has provided a serious of education videos, technical seminars, and tutorials that you can find on Q-CTRL’s YouTube channel here.

Toptica Photonics has developed a Quantum Quiz app where players can test and improve their knowledge about quantum technologies.  It is available for both Apple iOS and Android smartphones. The quiz has three increasingly difficult levels of play and can be used in either Solo or Multiplayer mode.

FutureLearn in association with Keio University is offering a free online course called Understanding Quantum Computers.  This is a four week course requiring an estimated five hours per week of study that will discuss the motivation for building quantum computers, cover the important principles in quantum computing, take a look at some of the important quantum computing algorithms and provide a brief look at quantum computing hardware and the budding quantum information technology industry. It is meant for high school students, college students, and computer professionals interested in developing a qualitative understanding of quantum computing.

A blog post that lists Quantum Computing Resources for High School Students is available on the Unitary Fund website. It was written as a guest posting by Jack Ceroni and describes both programs and educational resources that may be of interest to a quantum-curious high school student.

David Deutsch has posted six video Lectures on Quantum Computation designed as an introduction to the quantum theory of computation.

The Perimeter Institute has posted a series of 14 hour long lectures by Daniel Gottesman called the Quantum Information Review.  This lecture series was recorded relatively recently in 2015 and they can be downloaded in multiple formats (MP4, MP3, and PDF).

Microsoft and have teamed to create an online course on Quantum Computing.  It is a 33 chapter course that teaches quantum computing concepts and some well-known algorithms using Microsoft’s Q# language with Python. The first two chapters of the course are free but there is a fee to access the remaining chapters.

Microsoft has created a series of tutorials called the Quantum Katas.  These tutorials are an open source project that contains a series of programming exercises using the Q# programming language that allow users to learn at their own pace.  They are used with the Microsoft Quantum Development Kit and consists of a sequence of quantum computing tasks that require a user to fill in some code.  The katas use simple learning principles including active learning, incremental complexity growth, and feedback.  For more information you can read the Microsoft blog description here and download the code and instructions on how to install it at GitHub here.

QuTech has available online the QuTech Academy which currently includes four courses on  These include:

  • Quantum internet & quantum computers: how will they change the world? – an introduction to the various potential applications of a quantum computer and a quantum internet.
  • Building blocks of a quantum computer – part 1: what does a quantum computer look like, what components will it have and how does a quantum computer operate? Part 1 focusses on the layers of the qubit.
  • Building blocks of a quantum computer – part 2: as a continuation of part 1, part 2 will explain the other layers of a quantum computer, ranging from the electronics, to hardware, software and algorithms needed to operate a quantum computer.
  • Quantum Cryptography: this course dives deeper into the quantum protocols and how this will lead to secure communication.

Caltech has online the course material for Physics 219, Quantum Computation. This is a course which has evolved for over 10 years and now has over 400 pages of material online in nine chapters. You can find this course at:

Umesh Vazirani of UC Berkeley has recorded a series of 64 video lectures for a course titled: Quantum Mechanics and Quantum Computation. The videos are short ranging from 5 to 20 minutes in length and provide a good introduction to basic quantum mechanical principles, qubits, and quantum algorithms.  The videos have been uploaded onto YouTube and you can find them at

Daniel Colomer of Quantum Intuition has created a YouTube channel containing several hundred videos covering a broad range of topics related to quantum algorithms and programming quantum computers. The videos are divided into six areas including Project Reviews, Quantum AI/ML, Textbook Algorithms, Useful Primitives, Quantum Error Correction, and Book & Online Course Reviews.  The videos range in length from 2 minutes to 2 hours, but the average is roughly in the 30 minute range.  These videos are a good source for those who want to better understand a particular topic because the videos show online demonstrations using several different software platforms such as Qiskit, Cirq, Pennylane, Quirk and others.  You can view the videos on the Quantum Intuition YouTube channel at

MIT offers an xPRO series consisting of two series with two courses in each series. The courses consist of video lectures from MIT professors with associated problem sets and each lasts for four weeks. The Quantum Computing Fundamentals series has two courses. The first is called Introduction to Quantum Computing and the second is called Quantum Computing Algorithms for Cybersecurity, Chemistry, and Optimization. The Quantum Computing Realities series has Practical Realities of Quantum Computation and Quantum Communications as the first course and Requirements for Large-Scale Universal Quantum Computation as the second. Details on these courses and links to enroll in them can be found on the MIT web site at

Quantum Computing UK provides a web site that contains several tutorials that introduces the reader to quantum computing.  In addition, they maintain a code repository that allows someone to run programs on quantum computers and they also perform research and publish papers on quantum computing algorithms.

Dr. James Wootton of the University of Basel has developed a blog site called Decodoku and associated games devoted to the topic of quantum error correction.   The site contains two games called Decodoku and Decodoku Puzzles where are available for download on both IOS and Android.   Playing the games allows one to learn and do research on quantum error correction.    In addition, the blog has a good series of posts that provide a good tutorial on quantum error correction.

Two different companies, Qubitekk and Phase Space Computing, have developed educational toolkits suitable for classroom use that provides students with hands-on experience with quantum phenomena.  The Qubitekk product, called the Quantum Mechanics Lab Kit,  includes all of the equipment and instructions needed to perform seven fundamental experiments in quantum mechanics.  The kit is based on photonic technology and includes a laser, bi-photon source, photon counting module, coincidence counter and various fiber optic components to demonstrate entanglement, superposition and other quantum phenomena.  The Phase Space Computing Toolkits consist of electronic circuit boards that approximate the behavior of quantum gates. They use patent pending, two-complementary pass-transistor logic to similar the behavior of reversible quantum gates. Their toolboxes can demonstrate functions such as quantum key distribution, teleportation, superdense coding, the Deutsch-Jozsa algorithm and Shor’s algorithm.

qutools GmbH is offering three different Quantum Physics Education and Science Kits.  These include quED, an entanglement demonstrator, Quantenkoffer, a plug and play quantum science kit with single and entangled photon pairs that provide multiple tokens with different optical abilities give a huge variety of experiments and quNV for investigating quantum sensing using nitrogen-vacancy (NV) centers.

There is a concise, yet very understandable brief on quantum annealing written by Brianna Gopaul.  The brief describes how quantum annealing works, what organizations are developing quantum annealers, and applications where they may be used.  You can view this brief at: